Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
ChemMedChem ; 16(23): 3553-3558, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1437037

ABSTRACT

In the search for a fast contact-killing antimicrobial surface to break the transmission pathway of lethal pathogens, nanostructured copper surfaces were found to exhibit the desired antimicrobial properties. Compared with plain copper, these nanostructured copper surfaces with Cu(OH)2 nano-sword or CuO nano-foam were found to completely eliminate pathogens at a fast rate, including clinically isolated drug resistant species. Additionally these nanostructured copper surfaces demonstrated potential antiviral properties when assessed against bacteriophages, as a viral surrogate, and murine hepatitis virus, a surrogate for SARS-CoV-2. The multiple modes of killing, physical killing and copper ion mediated killing contribute to the superior and fast kinetics of antimicrobial action against common microbes, and ESKAPE pathogens. Prototypes for air and water cleaning with current nanostructured copper surface have also been demonstrated.


Subject(s)
Bacteria/drug effects , Copper/chemistry , Hepatitis Viruses/drug effects , Hydroxides/chemistry , Nanostructures/toxicity , SARS-CoV-2/drug effects , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Copper/pharmacology , Drug Resistance, Bacterial/drug effects , Mice , Microbial Sensitivity Tests , Nanostructures/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL